Camille Bélanger-Champagne Uppsala Universitet for the ATLAS Collaboration

UNIVERSITET

Study of charged particle correlations and underlying events with the ATLAS detector

VIth Workshop on Particle Correlations and Femtoscopy, Kiev, September 14th 2010

Motivation

- Pertubative QCD calculations cannot be done in the "soft" regime where the transverse momentum transfer between initial and final states is small
 - Underlying event (UE): beam-beam remnants, multiple parton interactions, initial and final state radiation, etc.

Motivation

- Pertubative QCD calculations cannot be done in the "soft" regime where the transverse momentum transfer between initial and final states is small
 - Underlying event: beam-beam remnants, multiple parton interactions, initial and final state radiation, etc.
- Data predictions done in MC simulations via phenomenological models with many parameters
 - New/improved measurements of quantities sensitive to soft QCD effects deepens physics understanding and improves models.

Track-based underlying event studies

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2010-081/

Underlying event sensitivity

- Consider charged tracks in minimum bias events
 - Align event leading p_T track at $\varphi=0$
- Define 3 equal regions in $|\Delta \phi|$
 - Transverse region most sensitive to UE, perpendicular to hardest scattering axis
- Measure track-based observables in all regions
 - Charged particle multiplicity vs p_{T lead}
 - Scalar p_T sum vs $p_{T \text{ lead}}$
 - $\langle p_T \rangle vs p_{T \text{ lead}}$
 - ϕ distribution of track density

Minimum bias sample

- Samples collected with the ATLAS minimum bias trigger
 - Beam Pickup Timing devices (BPTX) signals beam presence
 - electrostatic beam pick-ups ± 175 m from centre
 - Minimum Bias Trigger Scintillators (MBTS)
 - at detector ends in front of endcap-calorimeter at ± 3.56 m
 - $2.09 < |\eta| < 3.84$

Event/Track selections

- Presence of a good reconstructed primary vertex (PV) according to ATLAS criteria
- Pile-up rejection
- At least one track with:
 - $p_T > 1 \text{ GeV}$
 - IηI< 2.5
 - 1 pixel detector cluster and 6 hits in the silicon central tracker
 - transverse and weighted longitudinal distances of closest approach <1.5mm relative to PV
 - for tracks with $p_T > 10$ GeV, χ^2 probability of track fit >0.01 (remove mismeasured tracks)
- Add to sample all other good tracks with $p_T > 500 \text{ MeV}$

Corrections and Unfolding

• Corrections

 Event: Trigger and vertex reconstruction efficiency, lead track requirement

- Track: Reconstruction efficiency correction in p_T and η , secondaries, fakes, kinematic range limits
- Unfolding
 - Event reorientation (unreconstructed lead particle)
 - Bin-to-bin migrations

Measured in MC, validated with data

Systematic Uncertainties

UPPSALA UNIVERSITET

Charged particle multiplicity

More tracks are present in UE than predicted!

Tune DW provides good description of other regions

Scalar p_T sum of charged particles

Plateau level 10-15% higher than predictions

As expected, toward region higher than away region.

C. Bélanger-Champagne

$< p_T > of charged particles$

Plateau level slightly higher than predictions

As expected, toward region higher than away region.

ϕ distribution of track densities

 Emergence of jet structure as p_T requirement of leading track is increased

Summary of UE measurements

- First measurements of UE characteristics with the ATLAS detector were presented
- Data was corrected and unfolded so that comparison to MC models was possible
- Provides valuable input to MC models
 - Transverse region/UE more active and energetic than expected
 - Measured $\langle p_T \rangle$ lies above the MC expectations
 - Formation of jet-like structures different from predictions

Angular correlations between charged particles

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2010-082/

Angular correlations in MB

- Further investigation: turn the tables on the measurement of ϕ distribution of track density
 - Isolate the peaking features at zero and $\boldsymbol{\pi}$
 - Carefully design measurements to decrease sources of systematic uncertainties
- Measurement can be used as input to tuning of phenomenological models in MC simulations

Crest shape variable

• Distance in φ between the leading track (highest p_T track) and each one of the other selected track $\widehat{P}_{1800}^{\times 10^3}$

Data,√s=7 TeV

2

1.5

p_>500 MeV, |η|<2.5

2.5

3

 $\Delta \phi$

1000

800

600

400

0

200 ATLAS Preliminary

0.5

Same – opposite observable

 Event-by-event, assign tracks to one of two detector regions

Same – opposite observable

- Subtract "opposite" distribution from "same" and normalise
- Sensitive to η correlations

Correction for tracking efficiency

• Tracking efficiency in p_T and η

C. Bélanger-Cha

- On non-leading tracks: apply weight to entry to correct for missing tracks (also fakes and secondary contamination)
- On leading tracks: do a bin-by-bin shape correction based on knowledge of shape changes with extra loss of leading tracks

Summary of systematics

• Other large sources of systematic include p_T resolution effect and selection effects associated to the 2-track requirement

		Relative uncertainty
Source of systematic uncertainty	Implemented	in first bins
Event selection inefficiency	bin-by-bin	1%-3%
Bias remaining after corrections	2% in first 4 bins	2%
Resolution - phase space boundaries	bin-by-bin	1%-2%
Resolution - leading track	bin-by-bin	0.1%-0.2%
Efficiency of leading tracks	bin-by-bin	0.1%-0.2%
Efficiency of non-leading tracks	0.2% in each bin	0.2%
ϕ dependence of the tracking efficiency	6×10^{-5} in each bin	0.1%-0.2%
Choice of the d_0^{PV} cut	9×10^{-5} in each bin	0.1%-0.3%
Statistical uncertainty		900 GeV: 3%-4%
		7 TeV: 0.3%-0.4%

Table 1: Systematic uncertainties, summary table

Measured distributions $|\eta| < 2.5$

C. Bélanger-Champagr

Measured distributions $|\eta| < 1$

Better match for restricted region |η|<1 is expected: CDF tuning data available in that region

Comparison to Pythia tunes (6.1.4.21)

p_{T} -ordered shower, Perugia tunes

C. Bélanger-Char

 $\Delta \phi$

3

 $\Delta \phi$

2.5

UPPSALA UNIVERSITET

3

З

 $\Delta \phi$

Comparison to Pythia tunes (6.1.4.21)

0.06

0.05

Data,√s=7 TeV p_>500 MeV, |η|<2.5

Pythia Tune A

······ Pvthia Tune DW

Virtuality-ordered showers

Data,√s=900 GeV

······ Pvthia Tune DW

p_>500 MeV, |η|<2.5 Pythia Tune A

0.06

0.05

C. Bélanger-Char

UPPSALA UNIVERSITET

3

3

 $\Delta \phi$

2.5

Pythia Tune P0

Pythia GAL

Pythia Tune P0 NOCR

0.1

0.08

0.06

0.04

0.02

-0.02<u>0</u>

ATLAS Preliminary

0.5

same

 $N \frac{T}{opp})/\Sigma (N \frac{T}{c_{s}})$

same _ L

Comparison to Pythia tunes (6.1.4.21)

Color reconnection models

- N $\frac{1}{\text{opp}}$) / (π /50) Data,√s=900 GeV p_>500 MeV, |η|<2.5 0.12 Pythia Tune P0 0.1 Pythia Tune P0 NOCR Pythia GAL 0.08 $N \frac{T}{opp})/\Sigma (N \frac{T}{same}$ 0.06 0.04 0.02 T same ATLAS Preliminary Z -0.02^{__} 3 0.51.52.5 $\Delta \phi$

C. Bélanger-Cha

Summary of angular correlations

- Study soft QCD via angular correlations in minimum bias events
 - Currently poorly modeled in all tunes available in PYTHIA 6
- $\Delta \phi$ observables are a potential input variable to future MC tuning
 - Very precise, low systematics

- ATLAS soft QCD research is in full bloom, already helping to
 - deepen our understanding of the UE and angular correlations
 - provide new, precise input to MC modeling
- New tune: ATLAS Minimum Bias Tune 1 (AMBT1)
 - Using MB results (presented here by E. Sarkisyan-Grinbaum)
 - And first UE measurements
- Expect more from ATLAS this fall
 - Particle correlations and fluctuations
 - Further improved tunes

BACKUP SLIDES

C. Bélanger-Champagne

 p_{T} -ordered showers

0.5

C. Bélanger-Char

3

2.5

2

1.5

32

3

 $\Delta \phi$

2.5

0.5

UPPSALA UNIVERSITET

Comparison to Pythia tunes (6.1.4.21)

 $\Delta \phi$

• Virtuality-ordered showers

C. Bélanger-Char

Comparison to Pythia tunes (6.1.4.21)

Colour reconnections

C. Bélanger-Char

- N $^{T}_{opp}$) / (π /50)

UPPSALA UNIVERSITET