
Measurements of two-particle correlations in pp collisions at $\sqrt{s} = 900$ GeV with the ALICE experiment§

J. Mercado[‡] for the ALICE Collaboration

WPCF 2010 - Kiev September 14, 2010

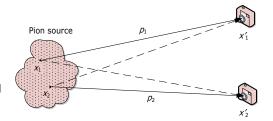
Physics motivation

- Look for signatures of collective behavior in pp collisions at LHC energies
 - by using the Bose-Einstein enhancement of identical-pion pairs to deduce the size of the pion source, and
 - by studying the source size as a function of event multiplicity and particle transverse momentum.
- Measurement in pp interesting in itself, but also crucial as reference for heavy-ion collisions.

Bose-Einstein correlations

The space-time properties of the emitting source in elementary particle collisions can be investigated through measurements of Bose-Einstein correlations (BEC) between identical bosons.

 The interference is studied using the correlation function (CF)

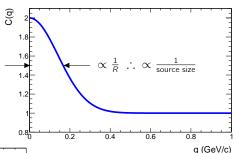

$$C(p_1, p_2) = \frac{P(p_1, p_2)}{P(p_1)P(p_2)}.$$

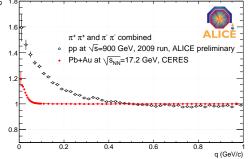
 Since BEC are manifest at small relative momenta, C is measured using the distribution of the variable q,

$$q = \sqrt{-(p_1 - p_2)^2} = \sqrt{m_{\text{inv}}^2 - 4m_{\pi}^2}.$$

Experimentally,

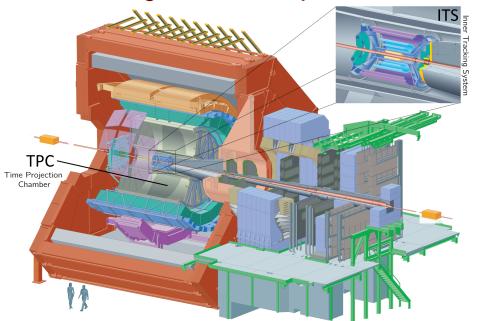
$$C(q) = \frac{A(q)}{B(q)}.$$

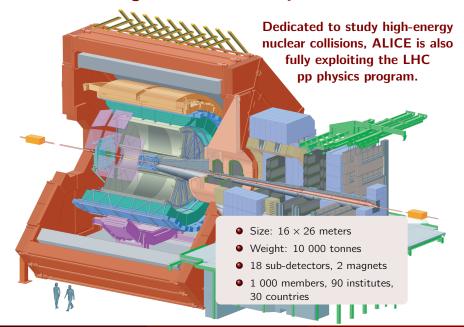

A(q) is the measured distribution of pair momentum difference q, and B(q) is a reference distribution built by using pairs of particles from different events which by construction are expected to have no BEC.


HBT radius

 In this technique, also known as Hanbury Brown-Twiss (HBT) interferometry, a commonly used parametrization of C(q) is

$$C(q) = 1 + \lambda e^{-(Rq)^2},$$

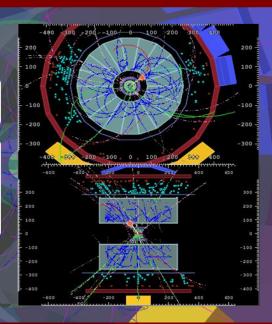

where R is the effective size of the emission region and the parameter λ measures the strength of BEC.



It has been observed that the HBT radius allows to distinguish between different collision systems, e.g. pp and Pb+Au.

ALICE – A Large Ion Collider Experiment

ALICE – A Large Ion Collider Experiment

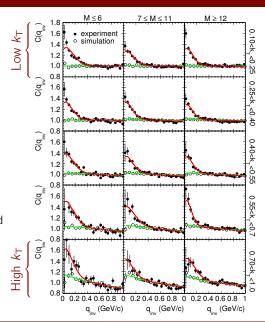


Running conditions J. Mercado (Universität Heidelberg) WPCF 2010 - Kiev, Ukraine September 14, 2010

Running conditions

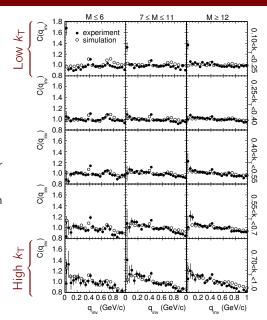
Data collected during the first stable-beam period of the LHC commissioning in December 2009.

- 250k events analyzed.
- Recorded with B = 0.5 T.
- Using tracks registered by the ITS and TPC detectors.
- First results limited by available statistics.

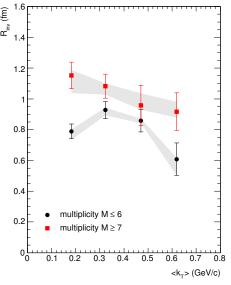

Identical pion correlation functions

- Analysis performed only for the one-dimensional CFs, $C(q_{inv})$, due to the limited available statistics.
- Combined $\pi^+\pi^+$ and $\pi^-\pi^-$ pairs.
- CFs studied in bins of event multiplicity, M, and of transverse momentum, $k_T = \frac{1}{2} |p_{T,1} + p_{T,2}|$.
- Gaussian function used to fit the BEC peak,

$$G(q_{\text{inv}}) = \lambda \cdot \exp\left(-R_{\text{inv}}^2 q_{\text{inv}}^2\right)$$
,


with λ the correlation strength, and R_{inv} the HBT radius.

- Long-range correlations develop as k_T increases.
- Simulations made using PHOJET.



Non-identical pion correlation functions

- $\pi^+\pi^-$ correlations used to verify the description of the CF baseline.
- Mutual Coulomb interaction and meson decay peaks are reproduced reasonably well by PHOJET.
- The same model can be used to describe the correlation baseline for identical pion CFs.
- Since the structures are different in like-sign and unlike-sign pions, the ratio of the two CFs was not used.
- Baseline has to treated properly.

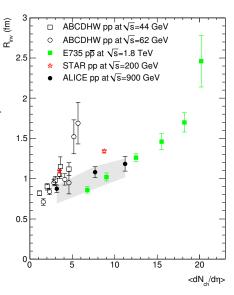
R_{inv} vs. M and R_{inv} vs. k_{T}

Extracting the HBT radii

Simulation points are fitted with

$$D(q_{\rm inv}) = a + b q_{\rm inv} + c q_{\rm inv}^2.$$

The experimental CF is fitted by


$$egin{aligned} \mathcal{C}(q_{\mathsf{inv}}) &= \left\{ (1-\lambda) + \lambda \mathcal{K}(q_{\mathsf{inv}})
ight. \\ &\qquad \times \left[1 + \exp\left(-R_{\mathsf{inv}}^2 q_{\mathsf{inv}}^2
ight)
ight] \left. \right\} \mathcal{D}(q_{\mathsf{inv}}), \end{aligned}$$

taking $D(q_{\text{inv}})$ from the PHOJET fit and adjusting λ and R_{inv} . The factor $K(q_{\text{inv}})$ accounts for the Coulomb effect.

- Systematic errors (shaded bands): difference between the fits using PHOJET and PYTHIA backgrounds.
- The multiplicity and k_T dependencies were analyzed separately.

Multiplicity dependence

- Source radius increases with multiplicity, consistent with previous measurements.
- Well known behavior in nuclear collisions.
 - In pp collisions, indicates that the HBT radii depend on multiplicity rather than on collision geometry.
- Systematic error includes contributions from baseline assumption, fitting procedure and background construction.

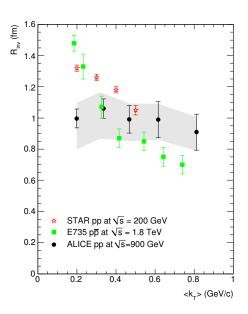
Gaussian vs. exponential fit

 Extracting the HBT radii using an exponential fit function gives results in close agreement to those obtained from a Gaussian fit.

Gaussian

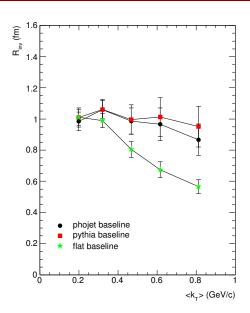
$$C(q_{\text{inv}}) = \left\{ (1 - \lambda) + \lambda K(q_{\text{inv}}) \left[1 + \exp\left(-R_{\text{inv}}^2 q_{\text{inv}}^2\right) \right] \right\} D(q_{\text{inv}})$$

$\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta \rangle$	λ	R _{inv} (fm)
3.2	0.386 ± 0.022	$0.874 \pm 0.047 \text{ (stat.) } ^{+0.047}_{-0.181} \text{ (syst.)}$
7.7	0.331 ± 0.023	$1.082 \pm 0.068 \text{ (stat.) } ^{+0.069}_{-0.206} \text{ (syst.)}$
11.2	0.310 ± 0.026	$1.184 \pm 0.092 \; ({ m stat.}) \; ^{+0.067}_{-0.168} \; ({ m syst.})$


Exponential

$$C(q_{\text{inv}}) = [1 + \lambda \exp(-R_{\text{inv}}q_{\text{inv}})] D(q_{\text{inv}})$$

$\langle dN_{ch}/d\eta \rangle$	λ	$R_{inv}/\sqrt{\pi}\;(fm)$
3.2	0.704 ± 0.048	$0.809 \pm 0.061 \text{ (stat.) } ^{+0.049}_{-0.208} \text{ (syst.)}$
7.7	0.577 ± 0.054	$0.967 \pm 0.095 \text{ (stat.) } ^{+0.071}_{-0.206} \text{ (syst.)}$
11.2	0.548 ± 0.051	$1.069 \pm 0.104 \text{ (stat.) } ^{+0.063}_{-0.203} \text{ (syst.)}$


Transverse momentum dependence

- Dependence on k_T: important to unravel presence of bulk, collective behavior in pp collisions.
- Our HBT radius is practically independent of k_T within the range studied.
- This result crucially depends on the baseline shape assumption.
 - If the baseline is assumed to be flat, an apparent k_T dependence emerges.
 - This is due to non-BEC that give rise to wider CFs which are misinterpreted as smaller radii.

Transverse momentum dependence

- Dependence on k_T: important to unravel presence of bulk, collective behavior in pp collisions.
- Our HBT radius is practically independent of k_T within the range studied.
- This result crucially depends on the baseline shape assumption.
 - If the baseline is assumed to be flat, an apparent k_T dependence emerges.
 - This is due to non-BEC that give rise to wider CFs which are misinterpreted as smaller radii.

Summary

- ALICE has measured two-pion correlation functions in pp collisions at $\sqrt{s} = 900$ GeV.
- The extracted HBT radii increase with event multiplicity, in agreement with previous measurements.
- Less consistent is the transverse momentum dependence where R_{inv} is practically constant within the errors and range studied.
 - Three-dimensional analysis will give more information (talk by A. Kisiel).
- Baseline correlations are of crucial importance.
- Results from Gaussian and exponential fits are in good agreement.

The results presented here have been published in Phys. Rev. D **82**, 052001 (2010)

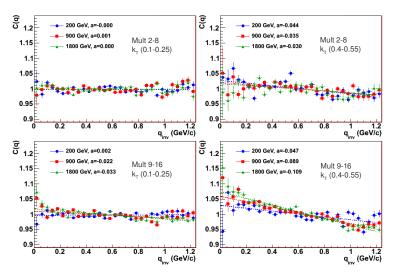
Backup

Data analysis

- Data sets:
 - Runs 104068–104892,
 252k events (241k good)
 - PYTHIA LHC10a12, 1762k events (1328k good)
 - PHOJET LHC10a14, 2352k events (1987k good)
- Event selection:
 - 252×10^3 minimum bias pp events
 - Trigger efficiency 95-97%
 - Primary vertex within 10 cm of TPC's center
 - Pseudorapidity range $|\eta| < 0.8$
- Track selection:
 - Transverse impact parameter r < 2.4 cm (TPC)
 - Longitudinal impact parameter z < 3.2 cm (TPC)
 - Transverse momentum range $0.15 \le p_T \le 0.65$ GeV

Gaussian vs. exponential fit (transverse momentum)

Gaussian


$\langle k_{\rm T} \rangle$ (GeV/c)	λ	R _{inv} (fm)
0.20	0.35 ± 0.03	1.00 ± 0.06 (stat.) $^{+0.10}_{-0.20}$ (syst.)
0.32	0.33 ± 0.03	1.06 ± 0.06 (stat.) $^{+0.11}_{-0.19}$ (syst.)
0.47	0.30 ± 0.04	0.99 ± 0.09 (stat.) $^{+0.10}_{-0.14}$ (syst.)
0.62	0.35 ± 0.06	0.99 ± 0.11 (stat.) $^{+0.10}_{-0.13}$ (syst.)
0.81	0.31 ± 0.06	0.91 ± 0.12 (stat.) $^{+0.10}_{-0.12}$ (syst.)

Exponential

$\langle k_{\rm T} \rangle$ (GeV/c)	λ	$R_{inv}/\sqrt{\pi}\;(fm)$
0.20	0.63 ± 0.05	$0.94 \pm 0.07 \text{ (stat.) } ^{+0.09}_{-0.20} \text{ (syst.)}$
0.32	0.58 ± 0.04	$0.93 \pm 0.07 \text{ (stat.) } ^{+0.09}_{-0.20} \text{ (syst.)}$
0.47	0.55 ± 0.07	0.92 ± 0.10 (stat.) $^{+0.09}_{-0.14}$ (syst.)
0.62	0.70 ± 0.11	$0.98 \pm 0.14 \text{ (stat.) } ^{+0.10}_{-0.14} \text{ (syst.)}$
0.81	0.60 ± 0.12	0.90 ± 0.16 (stat.) $^{+0.12}_{-0.15}$ (syst.)

Baseline correlations at various energies

▶ Baseline correlations grow with multiplicity and k_T , probably small at 200 GeV, but strong at 1.8 TeV (study by A. Kisiel).

