Femtoscopic results in Au+Au & p+p from PHENIX at RHIC

M. Csanád for the PHENIX Collaboration

Eötvös University, Budapest, Hungary

- Milestones of research at PHENIX
- Bose-Einstein correlations of charged kaons in 200 GeV Au+Au collisions

TELESTINU * ATANINOT

- Bose-Einstein correlations of charged pions in 200 GeV p+p collisions
- Squeezed particle-antiparticle correlations
- Photon HBT prospects

Milestones of RHIC results

- Jet suppression in A+A: <u>new phenomenon</u> – Phys. Rev. Lett. 88, 022301 (2002)
- No jet suppression in d+A: <u>matter strongly interacting</u> – Phys. Rev. Lett. 91, 072303 (2003)
- Summary of the results: matter is a liquid – Nucl. Phys. A 757, 184-283 (2005)
- Elliptic flow scaling: <u>quark degrees of freedom</u>
 Phys. Rev. Lett. 98, 162301 (2007)
- Heavy quark flow: viscosity near lower limit
 Phys. Rev. Lett. 98, 172301 (2007)
- Initial temperature: <u>high above critical temperature</u>

– Phys. Rev. Lett. 104, 132301 (2010)

Quark degrees of freedom

- Elliptic flow (v_2) is a central observable
 - measure of momentum space asymmetry
 - sign of collective behavior
- Measured for several types of particles, v₂(p_t)
- Scaling variable suggested by hydro: KE_t
- Both v₂ and KE_t scale by the number of quarks

- Explanation by quark flow
- Indirect sign of quark degrees of freedom

As perfect fluid as possible

- Kinematic viscosity η/s lower than that of superfluid helium
- Conjectured limit: $1/4\pi$ (via AdS/CFT)

Initial temperature from direct y

HBT nomenclature

Kaon HBT in Au+Au at RHIC

From M. Csanád, T. Csörgő, Acta Phys.Polon.Supp.1:521-524,2008

Kaon interferometry: M. Gyulassy, Sandra S. Padula, PRC 41, R21 (1990)

- Kaons less effected by decays of long lived resonances, than pions.

- A clearer distinction between QGP formation and resonance dynamics But kaons follow m_T scaling at CERN SPS: NA44 Collab, PRL 87:112301, (2001)

Kaon imaging in Au+Au

First imaging data: extended tail of pion emission in S(r)

Long lived resonances?Pions have longer tail, than kaons.Hadronic rescattering?Pions larger cross sections, than kaons.Anomalous diffusion in HRC simulation: kaon's tail is longer, than pions!(?)

Analysis details

- 600M events, Au+Au 200 GeV minimum bias dataset of 2004 (~30M like sign kaon pairs)
- Charged kaons tracked by DC, PC1, PC3, identified by time of flight from PbSc
- Kinematic cuts: $|\eta| < 0.35$, $\Delta \pi = \pi/2(\pi/4)$ in West(East) arm
- Matching cuts reduce backgrounds
- Pair selection cuts to remove merging and splitting
- Monte Carlo based corrections to extend into regions with reduced pair efficiency
- Phys.Rev.Lett.103,142301

Transverse mass scaling

and pions follow the same universal m_T scaling curve

More theory comparisons

Centrality Dependence

Similar slope as π -s, agrees well with linear extrapolation, R=0 for N_{part}=0

If rescaled by average m_t

Kaon Source Imaging

Significant tail for r>10 fm for kaon source Pion source is not only from long lived resonance (ω) decays Larger kaon tail consistent with hadronic resonance cascade models M. Csanád et al, hep-ph/0702032, T. Csörgő et al, nucl-th/051206.0298

Summary, K[±]K[±] in Au+Au

Kaon m_{T} and m_{T} scaled centrality dependence consistent with pions. Kaon HBT radii scale as $R_{HBT} = p_1 N_{part}^{1/3}$ i.e. R_{HBT}=0 at N_{part} =0 Bulk production in agreement with predictions on m_T scaling, and with a promising 1+1D+hydro+cascade with initial flow Significant tail in imaged K source for r>10fm Tail stronger for kaons than for pions ! Tail in pions not just from resonances! ۲

• Further checks needed for other particles (protons)!

Pion HBT in p+p

- Baseline measurement
- Run5 p+p minimum biased (~2.5M like sign pion pairs)
- Charged pions identified by time of flight from West PbSc
- Matching cuts reduce backgrounds
- Pair selection cuts to remove merging and splitting
- No Monte Carlo based corrections so more selective pair cuts

1-D Correlations

Slices of 3-D Correlation

Slices of 3-D Correlation

A few words on fitting

PYTHIA used as sanity check to limit fit range and help minimize impact of non-HBT correlations

Transverse Mass Dependence

p+p and Au+Au comparison

Summary: $\pi\pi$ in p+p

Pion correlations in min. bias collisions for PHENIX west arm acceptance do not show significant energy momentum contamination.

Measured radii: consistent with centrality extrapolation from Au+Au Plenty to look at (multiplicity dependence, jets...)

Squeezed particle-antiparticle correlations

- Back-to-back correlation: $q_{back} = |k_1 + k_2|$, particle-antiparticle
- Expectation:
 - In-medium mass modification → back-to-back correlations
 - M. Asakawa, T. Csörgő, M. Gyulassy, Phys. Rev. Lett. 83, 40134016, (1999)
 - S. S. Padula, T. Csörgő, Braz. J. Phys. 37, 949962, (2007)
 - Question: C₂(q_{back})≠1??
 - New type of QM correlations, different from:
 - HBT ↔ back-to-back
 - Jetjet correlations ↔ soft phenomenon, not from hard scattering
 - Only between particles and antiparticles
- Predicted signal is sensitive to:
 - mass modification (prerequisite)
 - freezeout characteristics, phase transition ...
 - detailed simulations show dependence on flow, system size, etc. Importantly: freezeout time & distribution

Results for kaons and protons

No visible deviation from 1 is found

- Neither for kaons, nor for protons, using ~900M Au+Au events
- Shaded bars: estimated uncertainty from PID (&other) cut variations
- Reliable PID is possible only in intermediate momentum ranges
- Low momentum pions favored by anomalous freezeout distribution

Results for pions

Intermediate momentum

- No significant deviation, using ~900M Au+Au events
- Shaded bars: estimated uncertainty from PID (&other) cut variations
- Reliable PID is possible only in intermediate momentum ranges

Low momentum

Some structure maybe, to be explored

Summary of back-to-back correlations

- PHENIX measurement of new type of particleantiparticle back-to-back correlation is analyzed
- Basic theoretical ground well established, input theory parameters are not clear
- No statistically significant deviation from 1 is found for pions, kaons and protons in the investigated momentum ranges
- In principle, statement could change with improved statistics
- Understanding physical backgrounds is critical
- Measurement of other particles?
- Need more data for improved measurement, or for resonances (eg. Φ meson)

Photon HBT with PHENIX

ບິ **Direct photons image QGP** Cent: 0-10%, K_{T} : 0.1-0.2GeV 1.004 Signal is very weak 1.002 Try to use two photons both from EMCal Photons do not bend → • correlated photons leave Cent: 0-10%, K_T: 0.2-0.3GeV close hits 1.004 One photon from EMCal, 1.002 another photon from HBD Huge improvement 0.998 Very limited statistics, any • 50 100 150 200 250 Q_{inv} (MeV/c) contamination destroys the PRL, WA98 Collaboration, 93(2),2004 signal

Photon HBT with PHENIX

dr(cm)

Summary of photon HBT

 Photon HBT could provide additional insights to QGP's dynamic evolution.

 Its signal is small and distorted by detector effects.

 The detector effects could be suppressed by using one externally converted photon in the correlation.

Summary of the summaries

- QGP created at RHIC
- Kaon HBT: done
 - Transverse mass scaling together with π 's
 - Zero size at zero N_{part}
- p+p HBT: done
 - Consistent with Au+Au HBT
 - A lot to be done
- Squeezed back-to-back correlations
 - Ongoing topic, no stat. significant signal yet
- Photon HBT feasibility study
 - One photon from internal conversion
 - Doable with a larger dataset

Thank you for your attention

1/2

APS 2010 announcement related articles (English)

Media	Headline
BNL News Release	Perfect' Llouid Hot Enough to be Quark Soup
BNL YouTube	Hot Guark Soup Produced at RHC
Google/news search	search Google News
DiscoverMagazine	The Hottest Science Experiment on the Planet, by Calla Coffeid
NY Times Science	in Brookhaven Collider, Scientists Briefly Break a Law of Nature, by Dennis Overbye
Newsday	Brookhaven Lab findings eye birth of the universe, by Sumathi Reddy
Reuters UK	Hottest temperature ever heads science to Big Bang
Fox News Inside Science	Measuring the Hottest Temperatures in the Universe
PhysOrg.com	Perfect Liquid Hot Enough to be Quark Soup
MSNBC CosmicLog	Hottest soup in the universe, by Alan Boyle
Mirror.co.uk News	Scientists create 250,000 times the heat of the Sun by Mike Swain
Oneindia	Subatomic soup may explain why matter won over antimatter after Big Bang
USA Today	Scientists re-create high temperatures from Big Bang, by Dan Vergano
DailyMail.co.uk	Scientists create hotest temperature since Big Bang - 250,000 times more scorching than our Sun by David
ScienceTech	Derbyshire
ABCNews Technology	Hottest Temperature Ever Heads Science to Big Bang by Mapple Fox
ScienceDaily	Perfect' Llouid Hot Enough to Be Quark Soup
ITWire.com Science-Energy	Record universal temperature created at Brookhaven, by William Atkins
DiscoveryNews	Scientists Cook Up Hotlest 'Soup' Ever, by Irene Klotz
TGDally Science	Scientists recreate Big Bang 'quark soup', <u>by Jean Antonique</u>
TheMoneyTimes	Scientists create temperature of 7.2 trillion degrees, hottest since Big Bang, by shita Sood
TopNews	Atom smashers create the hottest-ever lab temperature, by Justin Sorkin
WorldScience	Physicists report creating hotest temperatures ever in lab
Science a GoGo	Mirror symmetry broken at 7 trillon degrees, by Kate MeMile
DigitalJournal	Scientists collide gold ions, reach hottest temp ever recorded, by Paul Wallis
IndyPosted	Scientists Create Hottest Temperatures Ever. STILL No Black Hole, by Magole Romuld
ScienceNews.org	Hot and heavy matter runs a 4 trillion degree fever, by Laura Sanders
Interactions.org	Perfect' Llouid Hot Enough to be Quark Soup
TheWestAustralian	Hottest temperature even heads science to Big Bang, by Maogle Fox
NewsTrack India	Subatomic soup may explain why matter won over antimatter after Big Bang
DailyTech	Science U.S. Lab Recreates Violent Big Bang Temperatures, Makes Quark Soup by Jason Mick
ScienceBlog	Perfect' louid hot enough to be quark soup
Gizmodo Australia	Quark Soup Cooked At Highest Temperature In A Lab Ever, by Jesus Diaz
Popular Science	PUC Collider Oragins Output, Over Places at 4,000,000,000,000 Destroys Califur, by Sheet Fox

5/15/2010	Quark Soup Articles
CBC News Canada	Physicists create highest-ever lab temperature
redOrbit	Scientists Create Hotlest Temperature, Compare It To Big Bang
ecPulse	The highest temperature ever may unveil the universe mysterious creation
Telegraph.co.uk	US lab reaches Big Bang heat of four trillon degrees Celsius By an AFP reporter in Washington
NatureNews	Subatomic soup is hot stuff, by Eric Hand
InsideScience.org	Hottest Temperature in The Universe Measured By Devin Powell
LiveScience.com	Twisted Physics: 7 Recent Mind-Blowing Findings, select number one.

APS 2010 announcement related articles (non - English)

Headline
Am Anfang war der Symmetriebruch, Vier Billionen Grad heiße Untrali-Suppe untersucht, von Jan Lublinski
Successfully achieved four trillion degrees! Reproduced right-after-BigBang
t was hot in the beginning
Physicists have measured temperature of the Universe an it's first moments of life
Biggest heat since the Big Bang
Temperature of the Hottest Matter Measured
Creation of the Original Matter of the Universe
Results from America on the Original Matter of the Universe
At least 4 Trillon Celsius: Temperature of the Primordial Matter of the Universe
Bubbles of Violate Symmetry in the Quark Soup of RHIC.
Primordial Soup Boiling Again
Hungarian Researchers in Experiments Studying Post Big Bang State
Hungarian Participants in Measurement of Hotest Matter Ever
Temperature of Hotlest Ever Matter Measured

Last Updated on Tuesday, 06-Apr-2010 10:26:49 EDT by A. Franz

www.phenix.bnl.gov/QuarkSoup.html

Charged kaon analysis details

Momentum resolution: $\delta p/p = 0.7 \% \oplus 1 \% x p (GeV/c)$

Matching cuts for tracking: 2 σ position match in PbSc 3 σ position match in PC3

Kaon identification based on BBC and PbSc timing signals for $p_t < 0.9$ GeV/c. For $p_t > 0.9$ GeV/c, kaons accepted if $< 2 \sigma$ close to the invariant mass peak and $> 3 \sigma$ from the invariant mass peak of pions and (anti)protons.

At p_t ~ 1.5 GeV/c, contamination from pions: 4 %, from (anti)protons: 1 %.

After track selection and merging cuts: 1.5 x 10⁷ K⁺K⁺ and 1.4 x 10⁷ K⁻K⁻ pairs

HBT signal of 1st order phase transitions, uses $R_{out}/R_{side}(m_t, \sqrt{s_{NN}})$

