A method of η' rejection in p+p and Au+Au collisions

Máté Csanád, Mónika Kőfaragó
Eötvös University
Department of Atomic Physics

- Mass drop of the η' and HBT
- Kinematical cuts to reject π from η'
- Efficiency and loss analysis

VI Workshop on Particle Correlations and Femtoscopy
Kiev, September 14-18, 2010
Chiral Symmetry Breaking

- The three-quark model
 - SU(3) flavour-symmetry
 - Spontaneously broken
 => 9 Goldstone bosons
 - Corresponding to light mesons
 • There are only 8! (Meson-octet)

- $U_A(1)$ chiral symmetry explicitly broken
 - Distinct topological vacuum-states
 - Tunneling b/w them – quasiparticles (instantons)!
 - 9th boson gains mass – η' (958 MeV)
Restoration of the Symmetry

- High energy densities
 - Asymptotic freedom $\alpha_s \rightarrow 0$
 - Nontrivial topology vanishes
 - $U(1)$ no more broken
 - $SU(3)$ restored

 Remark:
 From SSB, One expects massless mesons.
 However, the flavour symmetry is inexact.

- Mass reduction
 Lower bound (Gell-Mann – Okubo):

 $$m_{\eta'} = m_0 + \Delta m$$

 $$m_0^2 = \frac{1}{3} (2m_K^2 + m_\pi^2); m_0 \approx 400\text{MeV}$$

 Upper bound (S,NS isosinglet eigenstates):

 $$m_s^2 = 2m_K^2 + m_\pi^2; \quad m_s \approx 700\text{MeV}$$
Signature: Particle Abundancy

• Hagedorn-model
 - Production of light mesons:

\[\sigma_i \sim \left(\frac{m}{2\pi} \right)^{3/2} e^{-m/T_H} \]

- \[T_H \sim 160 \text{ MeV} \] Hagedorn-temperature

• In case of a possible mass drop:
 - Number of \(\eta' \)'s would be small:
 - With a strongly reduced \(\eta' \) mass:
 - An enhancement of a factor of 50 at maximum
 - Increased weight of strange states, rather 3 to 16

• Consequence of the reduced mass:
 An increased abundancy of \(\eta' \) mesons
The η' through Phase Transition

- **Hadronization**
 - Reduced-mass η' mesons produced with a decreased mass with an increased abundancy

- **Decoupling from non-Goldstonionic matter**
 - Mean free path for annihilation is large
 - Long lived

- **"Condensate" in the medium**
 - Low-p_T η' mesons are unable to get on-shell in the vacuum
 - Medium acts as a trap for low- p_T η' mesons

- **As medium dissolves, the η' mesons regain their original mass**

Channels of Observation

- **Direct leptonic decay** $\eta' \rightarrow \ell^+ \ell^-$
 - Increased η'/π proportion in the low-p_T range
 - Excess in the $\ell^+ \ell^-$ spectrum under the ρ mass

- **η meson (BR=73%)** $\eta' \rightarrow \eta \pi^+ \pi^-$
 - Including decay through ρ
 - Decay of η meson
 - 23% $\eta \rightarrow \pi^+ \pi^- \pi^0$
 - 5% $\eta \rightarrow \pi^+ \pi^- \gamma$
 - 39% $\eta \rightarrow 2\gamma$
 - 33% $\eta \rightarrow 3\pi^0$
 - Enhanced production of uncorrelated pions
 - BEC of charged pions
 - Sensitive to the sources of the pions

- **Direct measurement** $\eta' \rightarrow \gamma \gamma$
 - Would be convincing, however, poor S/B ratio ($\pi^0 \rightarrow \gamma \gamma$)
Correlations & Core-Halo picture

- Pions from QM freezeout
 - Primordial (from phase transition)
 - Fast decaying resonances
 - Long-life resonances (ω, η, η', K_S^0)
 - Core/halo ratio: $\lambda(p_t)$
 - BEC intercept parameter

Hot and dense matter: η' mass reduction

↓

Enhanced η' content

Decay: $\eta' \to \eta + \pi^+ + \pi^- \to (\pi^0 + \pi^+ + \pi^-) + \pi^+ + \pi^-$

Average p_t of π's 138 MeV

↓

More non-interacting π's at low p_t

$\lambda(p_t)$ measures fraction of interacting π's

↓

A hole in $\lambda(m_t)$

Kapusta, Kharzeev, McLerran

Z. Huang, X-N. Wang

Vance, Csörgő Kharzeev

T. Hatsuda, T. Kunihiro
Phys. Rept. 247:221,1994
Simulations & experimental results

- Vértesi, Csörgő, Sziklai:
- Mass drop compatible with the data

- Other reasons possible?

Calculations: $m_{\phi}^* = 530$ MeV, $B^* = 55$ MeV

RHIC Datasets ($Au+Au, s_{NN}=200$ GeV)

Resonances: Kaneta et al.
 nucl-th/0405068
 present model
 model, no mass drop
 PHENIX ($Au+Au$ 200 GeV)
 nucl-ex/0401003
 STAR ($Au+Au$ 200 GeV)
 nucl-ex/0903.1296

PHENIX Sinyukov
PHENIX prelim
STAR Edgeworth
STAR Gauss
Detailed analysis

- Mass drop analyzed in detail
 - Csörgő, Vértesi, Sziklai: arXiv:0912.0258, .5526

- Maximal mass with 5σ contours: 730 MeV
- Best fit between 340-530 MeV
Need for confirmation

- Idea: reject pions from η'
- Method already tested
 - Kulka and Lörstad
 NIM A295, 443 (1990)
- In electron-positron
- Lund MC
Pion distribution analysis

• Kinematics as expected
• Cut possible
• Optimal cut to be explored
Rejection method

- Analyze $\pi^+\pi^+\pi^-\pi^-$ quadruplets
- Check if they fall within the kinematical cuts
 - m_{+-}^2 in 0.075 to 0.171 GeV2/c2 (in both combinations)
 - m_4^2 in 0.43 to 0.69 GeV2/c2
- Apply this to pairs:
 - Look for all quadruplets with this pair in it
 - If inside mass interval, it is FOUND
 - Check if from η' or not
- Apply this to particles:
 - Look for all quadruplets with this particle in it
 - If inside mass interval, it is FOUND
 - Check if from η' or not
- Acceptance cuts make it more complicated
Scenarios

• We checked several scenarios:
 – Pair or particle cuts
 – Acceptance: total, rapidity cut ($\eta<0.35$), angular cut (cut out a PHENIX-like half)
 – Negative or positive pions (essentially the same, will quote only π^+)

• Two simulations: Pythia and HIJING

• Au+Au and p+p, 200 GeV and 14 TeV

• Important numbers
 – Cut efficiency (% of η' descendants tagged)
 – Cut loss (% of non-η' descendants NOT tagged)
14 TeV p+p results

• No acceptance cut
 – Pairs: Efficiency 70%, Loss 40%
 – Particles: Efficiency 98%, Loss 5%

• Rapidity cut
 – Pairs: Efficiency 31%, Loss 16%
 – Particles: Efficiency 64%, Loss 14%

• Rapidity & transverse angular cut
 – Pairs: Efficiency 17%, Loss 8%
 – Particles: Efficiency 46%, Loss 11%
200 GeV p+p results

• No acceptance cut
 – Particles: Efficiency 98%, Loss 22%
 – Pairs: Efficiency 96%, Loss 3%

• Rapidity cut
 – Particles: Efficiency 56%, Loss 8%
 – Pairs: Efficiency 67%, Loss 3%

• Rapidity & transverse angular cut
 – Particles: Efficiency 52%, Loss 6%
 – Pairs: Efficiency 85%, Loss 4%
200 GeV Au+Au results

• No acceptance cut
 – Not done due to computing time problems

• Rapidity cut
 – Particles: Efficiency 99%, Loss 99%
 – Pairs: Efficiency 100%, Loss 55%

• Rapidity & transverse angular cut
 – Particles: Efficiency 99%, Loss 99%
 – Pairs: Efficiency 100%, Loss 52%
Results for pairs

- p+p, 200 GeV, angular + transverse cut
- p+p, 200 GeV, angular cut
- p+p, 200 GeV, no cut
- p+p, 14 TeV, no cut
- p+p, 14 TeV, angular cut
- p+p, 14 TeV, angular + transverse cut
- Au+Au, 200 GeV, angular + transverse cut
- Au+Au, 200 GeV, angular cut

Preliminary results

- Efficiency
- Loss
Results for particles

- p+p, 200 GeV, angular + transverse cut
- p+p, 200 GeV, angular cut
- p+p, 200 GeV, no cut
- p+p, 14 TeV, no cut
- p+p, 14 TeV, angular cut
- p+p, 14 TeV, angular + transverse cut
- Au+Au, 200 GeV, angular + transverse cut
- Au+Au, 200 GeV, angular cut

- Efficiency
- Loss
Summary

- Proof of concept, done in Au+Au and p+p
- Needs to be cross-checked
- Cut dependence to be explored
- Pair rejection seems to be doable in Au+Au
- Has to be done on an experimental sample
Thank you for your attention