A method of η' rejection in p+p and Au+Au collisions

Máté Csanád, Mónika Kőfaragó

Eötvös University Department of Atomic Physics

- Mass drop of the η' and HBT
- Kinematical cuts to reject π from η'
- Efficiency and loss analysis

VI Workshop on Particle Correlations and Femtoscopy

Kiev, September 14-18, 2010

Chiral Symmetry Breaking

 \mathbf{K}^{0}

 \mathbf{K}^{-}

π

η

η

 \mathbf{K}^+

K⁰

 π

• The three-quark model – SU(3) flavour-symmetry - Spontaneously broken => 9 Goldstone bosons - Corresponding to light mesons • There are only 8! (Meson-octet)

• $U_{\Lambda}(1)$ chiral symmetry explicitly broken - Distinct topological vacuum-states - Tunneling b/w them - quasiparticles (instantons) – 9th boson gains mass – η' (958 MeV) Der 14, 2010 M. Csanád, WPCF'10 Kiev

September 14, 2010

Restoration of the Symmetry

 \mathbf{K}^{0}

 \mathbf{K}^{-}

 $m_{n'} = m_0 + \overline{\Delta m}$

 $m_0^2 = \frac{1}{3} \left(2m_K^2 + m_\pi^2 \right); m_0 \approx 400 MeV$

η

η,

 \mathbf{K}^+

K⁰

 π

• High energy densities

- Asymptotic freedom $a_s \rightarrow 0$
- Nontrivial topology vanishes
- U(1) no more broken
- SU(3) restored

<u>Remark</u>:

From SSB, One expects massless mesons. However, the flavour symmetry is inexact.

Mass reduction

Lower bound (Gell-Mann – Okubo):

Upper bound (S,NS isosing let eigenstates): $m_S^2 = 2m_K^2 + m_{\pi}^2$; $m_S \approx 700 MeV$

Δm is the extra mass from instantons in a not-so-dense mediumSeptember 14, 2010M. Csanád, WPCF'10 Kiev

Signature: Particle Abundancy

Hagedorn-model

- Production of light mesons:

 $\sigma_i \sim (m/2\pi)^{3/2} e^{-m/T_H}$ $T_H \sim 160$ MeV Hagedorn-temperature

 $N_{n'}$ / N_{π^0} ~ $2 \mathrm{x} 10^{-2}$

- In case of a possible mass drop:
 - Number of η 's would be small:
 - With a strongly reduced η' mass: $N_{\eta'} / N_{\pi^0} \sim 1$
 - An enhancement of a factor of 50 at maximum
 - Increased weight of strange states, rather 3 to 16

• Consequence of the reduced mass: An increased abundancy of η' mesons

The η ' through Phase Transition

- Hadronization
 - Reduced-mass η'mesons produced with a decreased mass with an increased abundancy
- Decoupling from non-Goldstonic matter
 - Mean free path for annihilation is large
 - Long lived
- "Condensate" in the medium
 - Low- $p_T \eta'$ mesons are unable to get on-shell in the vacuum
 - Medium acts as a trap for low- $p_T \eta'$ mesons
- As medium dissolves, the η' mesons regain their original mass

The Return of the prodigal Goldstone boson. J. I. Kapusta, D. Kharzeev, L. D. McLerran Phys.Rev.D53:5028-5033,1996. Hep-ph/9507343

September 14, 2010

M. Csanád, WPCF'10 Kiev

Channels of Observation

- Direct leptonic decay $\eta' \rightarrow l^+l^-$
 - Increased η'/π proportion in the low-p_T range
 - Excess in the l^+l^- spectrum under the ρ mass
- η meson (BR=73%) $\eta' \rightarrow \eta \pi^+ \pi^-$
 - Including decay through ρ
 - Decay of η meson
 - 23% $\eta \rightarrow \pi^+ \pi^- \pi^0 \checkmark$
 - 5% $\eta \rightarrow \pi^+ \pi^- \gamma$ \checkmark
 - 39% η→2γ
 - 33% $\eta \rightarrow 3\pi^0$ *
 - Enhanced production of uncorrelated pions
 - BEC of charged pions
 - Sensitive to the sources of the pions
- Direct measurement $\eta' \rightarrow \gamma \gamma$
 - Would be convincing, however, poor S/B ratio ($\pi^0 \rightarrow \gamma \gamma$)

Correlations & Core-Halo picture

- Pions from QM freezeout
 - Primordial (from phase transition)
 - Fast decaying resonances
 - Long-life resonances (ω , η , η' , K_S^{0})
 - Core/halo ratio: $\lambda(p_t)$
 - BEC intercept parameter

Hot and dense matter: η' mass reduction \downarrow Enhanced η' content Decay: $\eta' \rightarrow \eta + \pi^+ + \pi^- \rightarrow (\pi^0 + \pi^+ + \pi^-) + \pi^+ + \pi^-$ Average p_t of π' s 138 MeV \downarrow More non-interacting π' s at low p_t $\lambda(p_t)$ measures fraction of interacting π' s \downarrow A hole in $\lambda(m_t)$

Kapusta, Kharzeev, McLerran Phys.Rev.D53:5028-5033,1996

Z. Huang, X-N. Wang Phys.Rev.D53:5034,1996

Vance, Csörgő Kharzeev Phys.Rev.Lett.81:2205-2208,1998

T. Hatsuda, T. Kunihiro Phys. Rept. 247:221,1994

September 14, 2010

Simulations & experimental results

- Vértesi, Csörgő, Sziklai: Nucl.Phys.A830:631,2009
- Mass drop compatible with the data

• Other reasons possible?

September 14, 2010

Detailed analysis

Mass drop analyzed in detail – Csörgő, Vértesi, Sziklai: arXiv:0912.0258, .5526

• Maximal mass with 5σ contours: 730 MeV

• Best fit between 340-530 MeV

September 14, 2010

M. Csanád, WPCF'10 Kiev

Need for confirmation

Idea: reject pions from n'
Method already tested

Kulka and Lörstad
NIM A295, 443 (1990)

In electron-positron
Lund MC

Pion distribution analysis

- Kinematics as expected
- Cut possible
- Optimal cut to be explored

Rejection method

- Analyze $\pi^+\pi^-\pi^-\pi^-$ quadruplets
- Check if they fall within the kinematical cuts
 - m_{+-}^2 in 0.075 to 0.171 GeV²/c² (in both combinations)
 - m_4^2 in 0.43 to 0.69 GeV²/c²
- Apply this to pairs:
 - Look for all quadruplets with this pair in it
 - If inside mass interval, it is FOUND
 - Check if from η^\prime or not
- Apply this to particles:
 - Look for all quadruplets with this particle in it
 - If inside mass interval, it is FOUND
 - Check if from η^\prime or not
- Acceptance cuts make it more complicated

Scenarios

- We checked several scenarios:
 - Pair or particle cuts
 - Acceptance: total, rapidity cut (η<0.35), angular cut (cut out a PHENIX-like half)
 - Negative or positive pions (essentially the same, will quote only π^+)
- Two simulations: Pythia and HIJING
- Au+Au and p+p, 200 GeV and 14 TeV
- Important numbers
 - Cut efficiency (% of η' descendants tagged)
 - Cut loss (% of non- η ' descendants NOT tagged)

14 TeV p+p results

- No acceptance cut
 - Pairs: Efficiency 70%, Loss 40%
 - Particles: Efficiency 98%, Loss 5%
- Rapidity cut
 - Pairs: Efficiency 31%, Loss 16%
 - Particles: Efficiency 64%, Loss 14%
- Rapidity & transverse angular cut

 Pairs: Efficiency 17%, Loss 8%
 Particles: Efficiency 46%, Loss 11%

200 GeV p+p results

- No acceptance cut
 - Particles: Efficiency 98%, Loss 22%
 - Pairs: Efficiency 96%, Loss 3%

• Rapidity cut

- Particles : Efficiency 56%, Loss 8%
- Pairs : Efficiency 67%, Loss 3%
- Rapidity & transverse angular cut

 Particles : Efficiency 52%, Loss 6%
 Pairs : Efficiency 85%, Loss 4%

200 GeV Au+Au results

- No acceptance cut

 Not done due to computing time problems
- Rapidity cut
 - Particles: Efficiency 99%, Loss 99%
 - Pairs: Efficiency 100%, Loss 55%
- Rapidity & transverse angular cut

 Particles: Efficiency 99%, Loss 99%
 - Pairs: Efficiency 100%, Loss 52%

Results for pairs

Results for particles

M. Csanád, WPCF'10 Kiev

- Proof of concept, done in Au+Au and p+p
- Needs to be cross-checked
- Cut dependence to be explored
- Pair rejection seems to be doable in Au+Au
- Has to be done on an experimental sample

Thank you for your attention