Femtoscopy with multi-strange baryons at RHIC

Petr Chaloupka

Nuclear Physics Institute Academy of Sciences of the Czech Republic

for the STAR collaboration

Outline

- Motivation for femtoscopy with $\boldsymbol{\Xi}$
- Current results of π - Ξ
- Coulomb fitting
- Comparison with HYDJET++
- Conclusions

Multistrange baryons

Effects of transverse flow

- Correlation between momentum and emission point
- Effective **reduction of source size** and **shift** in average emission point
- Effect increases with m_T

Non-identical correlations can test flow by measuring sizes and shifts of the sources

Particle identification and reconstruction

- Charged particles at midrapidity via dE/dx in TPC
 - $\pi: y = \{-0.8, 0.8\}$ $p_t = \{150, 800\} \text{ MeV/c}$

- Topological reconstruction of Ξ^{\pm}
 - $\Xi \rightarrow \pi + \Lambda$

Λ-> π + p

 $\Xi: p_t = \{1, 3\} \text{ GeV/c} < \beta_t >= 0.85$

π - Ξ correlations

- Purity corrected correlation function for **200GeV Au+Au** collisions.
- Coulomb and strong (Ξ^*1530) final state interaction effects present.
- Centrality dependence observed, particularly strong in the Ξ^* region

π - Ξ correlations

- Purity corrected correlation function • for **200GeV Au+Au** collisions.
- **Coulomb and strong** (Ξ^*1530) final • state interaction effects present.
- Centrality dependence observed, particularly strong in the Ξ^* region

 $\tau_{\Xi^*(1530)} = 21 \text{ fm/c}$

Spherical decomposition

Spherical decomposition – accessing emission shift

Z. Chajecki , T.D. Gutierrez , M.A. Lisa and M. López-Noriega, nucl-ex/0505009

$$A_{l,m}(|\vec{k}^*|) = \frac{\Delta_{\cos\theta}\Delta\varphi}{\sqrt{4\pi}} \sum_{i}^{\text{all bins}} Y_{l,m}(\theta_i,\varphi_i)C(|\vec{k}^*|,\cos\theta_i,\varphi_i) \qquad \text{c}$$

$$\cos \theta = \frac{k_{Long}^*}{|\vec{k^*}|} \qquad \varphi = \arctan \frac{k_{Side}^*}{k_{Out}^*}$$

Different A_{lm} coefficients correspond to different symmetries of the source

- A_{ω} monopole size
- A_{II} dipole shift in outdirection

 $A_{11} ≠ 0$ - shift in the average emission point between π and Ξ

FSI model comparison

- FSI models with strong FSI: S.Pratt: PRC68:054901, 2003 R.Lednicky
- Momenta of pairs from data
- Emission coordinates from model
- Gaussian source in PRF with shift in out direction:

$R_{\pi,out}$	$R_{\pi,side}$	$R_{\pi,long}$	Δr_{out}^*	R_{Ξ}
10.2	5.4	6.6	-8.0	2

- Coulomb part in qualitative agreement
- Discrepancy in Ξ^{*}region
 - over predicts A_{00}
 - flipped sign of A_{11}

FSI model comparison

- Hydro based models
 - Blast wave
 - HYDJET++: particle production and resonance decays
- Flow induced correlation between momenta and emission coordinates
- Qualitative reproduction of the Ξ^{*}region
 - overestimates both A_{00} , A_{11}
 - observed shift agrees with flow scenario

Gaussian fit – Coulomb only

11

Coulomb fit

- Central data possible to fit individual charge combinations.
- 1 and $0.2-\sigma$ contours of fit
- Other centralities simultaneous fit to all CFs.

Fitting with free λ parameter

- CF already corrected for pair purity.
- Reintroduction of the λ as a fit parameter $C_{fit}(\vec{k}^*) = \lambda(C(\vec{k}^*) 1) + 1$
- Estimate of the quality of purity correction and it's influence on extracted parameters.
- Strong correlation between λ and R in the fit.

fit to $\pi^- - \Xi^+$ in 0-10% central Au+Au at 200GeV:

Fitting with free λ parameter

- Statistically possible only for central data
- Fits converge in vicinity of $\lambda = 1$
- Average 10% error in purity correction ~ 1 fm difference in R
- For central data change of extracted R: 4.2->5.4 fm
- Estimate of systematic error due to purity corrections.

200GeV Au+Au fit results

- Extracted **centrality dependence** of Gaussian size R and relative shift $<\Delta r_{00}^{*}$, >.
- Both size and shift increase with centrality.
- Average emission point of Ξ is positioned more to the outside of the whole fireball than the average emission point of pion.
- Consistent with significant flow of the multi-strange baryons.

Comparison to HYDJET++ model

- Bjorken expansion parametrization of freeze-out
 - Blastwave
- Particle production statistical model
- Three different parameter sets tuned to reproduce spectra
 - $T_{ch}=T_{th}=165 \text{ MeV}$
 - T_{ch} =100MeV, T_{th} =165MeV
 - Combined scenario of Ξ early freeze-out.
- Decays of hadronic resonances
- Fast generation of events

parameter	Tch=Tth	Tch>Tth
Tch, GeV	0.165	0.165
Tth, GeV	0.165	0.100
μB, GeV	0.028	0.028
μS, GeV	0.007	0.007
μQ, GeV	-0.001	-0.001
γS	1	1
τ, fm/c	7.0	8.0
Δτ, fm/c	2.0	2.0
R, fm	9.0	10.0
ηmax	2	2
ρu max	0.65	1.1

N. Amelin et al.

Phys.Rev.C73:044909,2006 Phys.Rev.C74:064901,2006. Phys.Rev.C77:014903,2008.

<u>http://uhkm.jinr.ru</u>

The m_t spectra calculated with HYDJET++

m_t[GeV/c]

single freeze-out scenario:

17

π - Ξ emission asymmetry from the model

Does the shift depend on Ξ^*/Ξ ratio?

±* Transverse Momentum Spectra

- STAR preliminary measurements of $\Xi^* p_T$ spectra and Ξ^*/Ξ ratio.
- High ±*/± ratio compared to statistical model.

Richard Witt – STAR collaboration J. Phys.G34:S921-S924,2007

±* Transverse Momentum Spectra

The emission time probabilities for Ξ , π , K, p

for **direct** particles (emission duration $\Delta \tau = 2$ fm/c)

π - Ξ emission asymmetry from the model

"mix" events – taking pions from separate and Ξ from single temperature freeze-out.

Difference between freeze-out scenarios. Decrease of the emission shift in case of Ξ freezing out at higher T_{th}.

Does the shift depend on Ξ^*/Ξ ratio?

Small influence of the Ξ^*/Ξ ratio on the total R*out shift.

Conclusions and Outlook

- Extracted source sizes and shifts in the π - Ξ system for three centralities from Coulomb part of the correlation function.
- Results are in agreement with Ξ transverse flow.
- The comparison with HYDJET++ supports previous results suggesting that multistrange baryons decouple earlier – closer to the chemical freeze-out. Higher statistics needed for unambiguous conclusion.
- High statistics data from 2010 run with improved TOF identification on the way.

Note on purity corrections

- $CF = la(CF_raw 1)* + 1$
- If the purity is independent of k* it can be included in the fit as in pi-pi HBT.
- The purity of pions and Xi are pt dependent => pair puity depends on k*

CF corrected before fitting

•

Pion source size comparison

- Radii extracted by calculating CF and fitting
- $\pi \pi$ HBT radii well described
- With weak decays turned on lambda is reproduced

Resonance to Non-Resonance

Ratios/Ratio

- Ratios (resonance to non)
 - scaled to central point
 - short-lived K* suppressed
 - re-scattering
 - Σ^*/Λ level
 - (re-) generation
 - Λ^*/Λ suppressed
 - at creation?
 - Y. Kanada-En'yo and B. Muller, nucl-
 - L≞⁄2°°8€cay?
 - E^M/E^{askalo}hand Ecosol, PRC 73, (2006)

Centrality	Ξ*/Ξ Ρατιο
0-12%	0.92 ± 0.28
10-40%	0.60 ± 0.12
40-80%	0.51 ± 0.12

Implication

- N _{Part}
- significant hadronic scattering
 - density of π bath?
 - large Ξ - π cross-section?

Comparison to HYDJET++ model

- Matter is thermally equilibrated. Particle multiplicities are determined by the temperature and chemical potentials at chemical freeze-out. Statistical model. .
- •"concept of effective volume" T=const and μ =const the total yield of particle species is:

$$N_{eff} = \rho_i(T, \mu_i) V_{eff}$$
, total co-moving volume, ρ -particle number density

- Particles can be generated **on the chemical (Tth=Tch) or thermal freeze-out** hypersurface represented by a parameterization (or a numerical solution of the relativistic hydrodynamics).
- Various parameterizations of the hadron freeze-out hypersurface and flow velocity

Bjorken-like expansion (Blastwave) used in our study $\tau = (t^2 - z^2)^{1/2} = const$

linear rapidity profile $\rho_u = \frac{r}{R} \rho_u^{\text{max}}$

- Decays of hadronic resonances
- Fast generation of events

N. Amelin et al. Phys.Rev.C73:044909,2006 Phys.Rev.C74:064901,2006. Phys.Rev.C77:014903,2008. http://uhkm.jinr.ru

Thermal Model

Parameter	Т	μв	μs	μα	γs	radius
Value	0.169 +/- 0.006	0.04 +/- 0.01	0.016 +/- 0.009	-0.01 +/- 0.01	0.91 +/- 0.06	7.5 +/- 1.0

R. Witt@QM'06 J.Phys.G34:S921-S924,2007

FASTMC-Model parameters for central collisions:

- 1. Thermodynamic parameters at chemical freeze-out: Tch , { μ B, μ S, μ Q}
- 2. If thermal freeze-out is considered: Tth , $\mu\pi$ -normalization constant
- 3. As an option, strangeness suppression $\gamma s < 1$
- 4. Volume parameters:

 τ -the freeze-out proper time and its standard deviation $\Delta \tau$ (emission duration) **R**- fireball transverse radius

5. ρ_u^{max} -maximal transverse flow rapidity for Bjorken-like parametrization

- 6. η_{max} -maximal space-time longitudinal rapidity which determines the rapidity interval $[-\eta_{max}, \eta_{max}]$ in the collision center-of-mass system.
- 7. To account for the violation of the boost invariance, an option corresponding to the substitution of the uniform distribution of the space-time longitudinal rapidity by a Gaussian distribution in η .

 $\mu_{R}(\sqrt{s}), T(\mu_{R})$

8. Option to calculate T, μ_B using phenomenological parameterizations