

FIAS Frankfurt Institute for Advanced Studies

Fluctuations and Correlations in the HSD Transport Approach

Volodya Konchakovski, in collaboration with E. Bratkovskaya, W. Cassing, M. Gorenstein

Workshop on Particle Correlations and Femtoscopy Kiev, Ukraine

September 17, 2010

The Phase Diagram of QCD

√s

Many factors lead to the **"background" fluctuations** that can mask the signal of the critical point and therefore **have to be** carefully **studied** and **accounted for**:

- limited size of colliding system
- fluctuations of initial condition of heavy-ion collisions
- event-by-event fluctuations of the collision geometry
- experimental acceptance
- statistical fluctuations

• ...

In order to understand the "background" fluctuations we apply models,

where no phase transition is implemented

- wounded nucleon model
- statistical model of hadron-resonance gas
- transport models HSD and UrQMD

[•]

Basic Concept of HSD Transport Approaches

HSD – Hadron-String-Dynamics transport approach

Ehehalt, Cassing, Nucl.Phys. A602 (1996) 449; Cassing, Bratkovskaya, Phys. Rep.308 (1999) 65.

the phase-space density f_i follows the transport equations

$$\frac{\partial}{\partial t} + \left(\nabla_{\vec{p}} H \right) \nabla_{\vec{r}} - \left(\nabla_{\vec{r}} H \right) \nabla_{\vec{p}} \right) f_i(\vec{r}, \vec{p}, t) = I_{coll}(f_1, f_2, \dots, f_M)$$

with collision terms Icoll describing:

elastic and inelastic hadronic reactions:

baryon-baryon, meson-baryon, meson-meson

- formation and decay of baryonic and mesonic resonances
- string formation and decay

(for inclusive particle production: BB -> X , mB -> X, X =many particles)

implementation of detailed balance on the level of 1<->2

and 2<->2 reactions (+ 2<->n multi-particle reactions in HSD !)

 no explicit phase transition from hadronic to partonic degrees of freedom (implemented in PHSD: Cassing, Bratkovskaya Phys. Rev. C78 (2008) 034919)

Fluctuations in the number of participants

VK, Haussler, Gorenstein, Bratkovskaya, Bleicher, Stoecker, Phys. Rev. C73 (2006) 034902; C78 (2008) 024906

Even with fixed number of **projectile participants** N_p^{proj} the full number of participants N_p can fluctuate due to participant fluctuation in the **target** N_p^{targ} . Participants number fluctuations reflect in the observable fluctuations (e.g. multiplicity fluctuations)

the participant number one needs to consider only the most central collisions!

Statistical and HSD Model Results for Ratio Fluctuations

Gorenstein, Hauer, VK, Bratkovskaya, Phys. Rev. C 79(2009) 024907

Large difference in SM and the transport model predictions for ω with increasing energy!

For ratio fluctuations the measure

$$\sigma^2 \equiv \frac{\langle \Delta (N_A/N_B)^2 \rangle}{\langle N_A/N_B \rangle^2}$$

is used. Assuming $|\Delta N_A| \ll \langle N_A \rangle$, $|\Delta N_B| \ll \langle N_B \rangle$ it can be rewritten as:

$$\sigma^{2} \cong \frac{\omega_{A}}{\langle N_{A} \rangle} + \frac{\omega_{B}}{\langle N_{B} \rangle} - 2\rho_{AB} \left[\frac{\omega_{A}\omega_{B}}{\langle N_{A} \rangle \langle N_{B} \rangle} \right]^{1/2}$$

After subtraction of σ for mixed events one gets:

$$\sigma_{dyn} \equiv \pm |\sigma^2 - \sigma_{mix}^2|^{1/2} \times 100\%$$

• For $\sigma_{\mbox{\tiny dyn}}$ SM and HSD differ at low energies in contrast to $\omega!$

K/ π Ratio Fluctuations: Transport vs Data

• Exp. data show a plateau from top SPS up to RHIC energies and an increase towards lower SPS energies.

evidence for a critical point at low SPS energies ?

• But the HSD results shows the same behavior.

• K/ π ratio fluctuations are driven by hadronic sources. No evidence for a critical point in the K/ π ratio ?

HSD: Phys. Rev. C 79 (2009) 024907 UrQMD: J. Phys. G 30 (2004) S1381, PoS CFRNC2006,017 NA49: 0808.1237 STAR: 0901.1795

Jet energy loss

V. Konchakovski, WPCF2010, Kiev, Ukraine

Jet suppression: dN/dφ (HSD)

New: nonperturbative treatment of all medium interactions

Fig. 1. (Color on-line) Preliminary associated particle distributions in $\Delta \eta$ and $\Delta \phi$ with respect to the trigger hadron for associated particles with 2 GeV/ $c < p_T^{assoc} < p_T^{trig}$ in 0-12% central Au+Au collisions. Two different trigger p_T selections are shown: $3 < p_T^{trig} < 4$ GeV/c (upper panel) and $4 < p_T^{trig} < 6$ GeV/c (lower panel). No background was subtracted.

FIG. 2: (color online) Per-trigger correlated yield with $p_T^{trig} > 2.5 \text{ GeV/c}$ as a function of $\Delta \eta$ and $\Delta \phi$ for \sqrt{s} and $\sqrt{s_{_{NN}}}=200 \text{ GeV}$ (a) PYTHIA p+p and (b) PHOBOS 0-30% central Au+Au collisions. (c) Near-side yield integrated

I: High p_{τ} particle correlations in HSD vs. STAR data

HSD vs. STAR:

away side structure is suppressed in Au+Au collisions in comparison to p+p, however, HSD doesn't provide enough high p_T suppression
to reproduce the STAR Au+Au data
near-side ridge structure is NOT seen in HSD!

V. Konchakovski, WPCF2010, Kiev, Ukraine

II: Intermediate p_{τ} particle correlations in HSD vs. PHOBOS data

HSD vs. PHOBOS:

away side structure is suppressed in Au+Au collisions in comparison to p+p, however, HSD doesn't provide enough high p_T suppression
to reproduce the PHOBOS Au+Au data
near-side ridge structure is NOT seen in HSD!

V. Konchakovski, WPCF2010, Kiev, Ukraine

Summary

- The systematic study of fluctuations and correlations in microscopic transport approaches has been performed as a function of centrality, energy, experimental acceptance and system size. The results can be used as a baseline for the experimental and theoretical study of deconfinement and the critical point.
- The fluctuations in the number of target participants for fixed projectile participants - strongly influence all observable fluctuations.
- HSD results for the K/ π ratio fluctuations show that it grows at low SPS energies, the same as in the data!
- The near-side ridge in the wide range of pseudorapidity Δη as well as strong far-side jet suppression seen in the experimental data from the STAR, PHENIX and PHOBOS collaborations are not reproduced by hadron-string dynamics

Thanks to:

Elena Bratkovskaya

Mark Gorenstein

Wolfgang Cassing

Olena Linnyk

Vitalii Ozvenchuk

Viktor Begun

Beyond the Average Quantities: Fluctuations and Correlations

While average values of distributions can coincide, the higher moments of distributions can be different

$$\langle X^n \rangle \equiv \sum_X X^n P(X)$$

(where X – is an observable e.g. multiplicity)

One can construct measures to study fluctuations and correlations:

• Multiplicity fluctuations in some acceptance (charge, strangeness, etc.) $((\Delta N)^2) = (N^2) = (N^2)^2$

$$\omega = \frac{\langle (\Delta N)^2 \rangle}{\langle N \rangle} = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle}$$

- **Ratio fluctuations** in the acceptance (ratio of different species) $\sigma_{dyn}, \nu, etc.$
- Correlations between different species in the acceptance

$$\rho_{AB} \equiv \frac{\langle \Delta N_A \Delta N_B \rangle}{\left[\langle (\Delta N_A)^2 \rangle \langle (\Delta N_B)^2 \rangle \right]^{1/2}}$$

Correlations between multiplicities in different acceptance intervals

Skewness and kurtosis

17-September-2010

HSD – a microscopic model for heavy-ion reactions

- very good description of particle production in pp, pA, AA reactions
- unique description of nuclear dynamics from low (~100 MeV) to ultrarelativistic (~20 TeV) energies

Centrality dependence of angular correlations

Near-side jet is unchanged for all centralities

V. Konchakovski, WPCF2010, Kiev, Ukraine

W. Cassing, K. Gallmeister

NPA 748 (2005) 241

Background subtraction for Au+Au collisions

• Background can mask the signal and should be subtracted. Especially for soft p_T cuts when there are a lot of bulk particles in the associative p_T region.